MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Ion Source of Nitrogen Direct Analysis in Real-Time Mass Spectrometry as a Highly Efficient Reactor: Generation of Reactive Oxygen Species

Author(s)
Su, Rui; Yu, Wenjing; Sun, Kaiju; Yang, Jie; Chen, Changbao; Lian, Wenhui; Liu, Shuying; Yang, Hongmei; ... Show more Show less
Thumbnail
Download13361_2019_2132_ReferencePDF.pdf (1.228Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract An innovative strategy for sustainably active oxygen capture using nitrogen (N2) instead of helium (He) as direct analysis in real-time (DART) gas is demonstrated in this work. DART MS was carried out to analyze different polarity compounds including organophosphorus pesticides, amino acids, hormones, and poly brominated diphenyl ethers by using He and N2 as DART gas, respectively. The unexpectedly characteristic ionization reactions, including replacement reaction where the sulfur atom of P=S group, were replaced by oxygen atom, oxidation ([M + nO + H]+ or [M + nO-H]− (n = 1, 2, 3, 4, 5)), and hydrogen loss (loss of two hydrogens) rapidly occurred in situ in the presence of N2 under ambient conditions without any additives. The reaction mechanisms were proposed and further confirmed by high-resolution tandem mass spectrometry. Our study under high temperature and high voltage provides a powerful tool for generating unique ionic species that may be difficult to form by other means, which also creates favorable conditions for the future study of the mechanism of DART MS. Graphical Abstract
Date issued
2019-02-19
URI
https://hdl.handle.net/1721.1/131896
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Publisher
Springer US

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.