MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listening to Radiation Damage In Situ: Passive and Active Acoustic Techniques

Author(s)
Dennett, Cody A; Choens, R. C; Taylor, Caitlin A; Heckman, Nathan M; Ingraham, Mathew D; Robinson, David; Boyce, Brad L; Short, Michael P; Hattar, Khalid; ... Show more Show less
Thumbnail
Download11837_2019_3898_ReferencePDF.pdf (19.96Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract Knowing when, why, and how materials evolve, degrade, or fail in radiation environments is pivotal to a wide range of fields from semiconductor processing to advanced nuclear reactor design. A variety of methods, including optical and electron microscopy, mechanical testing, and thermal techniques, have been used in the past to successfully monitor the microstructural and property evolution of materials exposed to extreme radiation environments. Acoustic techniques have also been used in the past for this purpose, although most methodologies have not achieved widespread adoption. However, with an increasing desire to understand microstructure and property evolution in situ, acoustic methods provide a promising pathway to uncover information not accessible to more traditional characterization techniques. This work highlights how two different classes of acoustic techniques may be used to monitor material evolution during in situ ion beam irradiation. The passive listening technique of acoustic emission is demonstrated on two model systems, quartz and palladium, and shown to be a useful tool in identifying the onset of damage events such as microcracking. An active acoustic technique in the form of transient grating spectroscopy is used to indirectly monitor the formation of small defect clusters in copper irradiated with self-ions at high temperature through the evolution of surface acoustic wave speeds. These studies together demonstrate the large potential for using acoustic techniques as in situ diagnostics. Such tools could be used to optimize ion beam processing techniques or identify modes and kinetics of materials degradation in extreme radiation environments.
Date issued
2019-11-22
URI
https://hdl.handle.net/1721.1/131914
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Springer US

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.