Notice
This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/131920.3
A Criterion for Uniqueness of Tangent Cones at Infinity for Minimal Surfaces
dc.contributor.author | Gallagher, Paul | |
dc.date.accessioned | 2021-12-01T14:58:54Z | |
dc.date.available | 2021-09-20T17:30:57Z | |
dc.date.available | 2021-12-01T14:58:54Z | |
dc.date.issued | 2018-06-20 | |
dc.identifier.issn | 1050-6926 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/131920.2 | |
dc.description.abstract | Abstract We partially resolve a conjecture of Meeks on the asymptotic behavior of minimal surfaces in $$\mathbb {R}^3$$ R 3 with quadratic area growth. | en_US |
dc.publisher | Springer US | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s12220-018-9994-5 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Springer US | en_US |
dc.title | A Criterion for Uniqueness of Tangent Cones at Infinity for Minimal Surfaces | en_US |
dc.type | Article | en_US |
dc.relation.journal | The Journal of Geometric Analysis | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2020-09-24T21:45:33Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Mathematica Josephina, Inc. | |
dspace.embargo.terms | Y | |
dspace.date.submission | 2020-09-24T21:45:33Z | |
mit.journal.volume | 29 | en_US |
mit.license | PUBLISHER_POLICY | |
mit.metadata.status | Publication Information Needed | en_US |