Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/131920.3

Show simple item record

dc.contributor.authorGallagher, Paul
dc.date.accessioned2021-12-01T14:58:54Z
dc.date.available2021-09-20T17:30:57Z
dc.date.available2021-12-01T14:58:54Z
dc.date.issued2018-06-20
dc.identifier.issn1050-6926
dc.identifier.urihttps://hdl.handle.net/1721.1/131920.2
dc.description.abstractAbstract We partially resolve a conjecture of Meeks on the asymptotic behavior of minimal surfaces in $$\mathbb {R}^3$$ R 3 with quadratic area growth.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s12220-018-9994-5en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleA Criterion for Uniqueness of Tangent Cones at Infinity for Minimal Surfacesen_US
dc.typeArticleen_US
dc.relation.journalThe Journal of Geometric Analysisen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:45:33Z
dc.language.rfc3066en
dc.rights.holderMathematica Josephina, Inc.
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:45:33Z
mit.journal.volume29en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version