Show simple item record

dc.contributor.authorDimakis, Panagiotis
dc.contributor.authorYue, Guangyi
dc.date.accessioned2021-09-20T17:30:58Z
dc.date.available2021-09-20T17:30:58Z
dc.date.issued2018-09-14
dc.identifier.urihttps://hdl.handle.net/1721.1/131928
dc.description.abstractAbstract In this paper, we define the combinatorial wall-crossing transformation and the generalized column regularization on partitions and prove that a certain composition of these two transformations has the same effect on the one-row partition (n). As corollaries we explicitly describe the quotients of the partitions which arise in this process. We also prove that the one-row partition is the unique partition that stays regular at any step of the wall-crossing transformation.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10801-018-0839-xen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleCombinatorial wall-crossing and the Mullineux involutionen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:30:06Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media, LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:30:06Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record