Show simple item record

dc.contributor.authorBertsimas, Dimitris J
dc.contributor.authorOrfanoudaki, Agni
dc.contributor.authorWeiner, Rory B
dc.date.accessioned2021-11-15T14:35:42Z
dc.date.available2021-09-20T17:31:01Z
dc.date.available2021-11-15T14:35:42Z
dc.date.issued2020-10
dc.identifier.urihttps://hdl.handle.net/1721.1/131937.2
dc.description.abstractAbstract Current clinical practice guidelines for managing Coronary Artery Disease (CAD) account for general cardiovascular risk factors. However, they do not present a framework that considers personalized patient-specific characteristics. Using the electronic health records of 21,460 patients, we created data-driven models for personalized CAD management that significantly improve health outcomes relative to the standard of care. We develop binary classifiers to detect whether a patient will experience an adverse event due to CAD within a 10-year time frame. Combining the patients’ medical history and clinical examination results, we achieve 81.5% AUC. For each treatment, we also create a series of regression models that are based on different supervised machine learning algorithms. We are able to estimate with average R2 = 0.801 the outcome of interest; the time from diagnosis to a potential adverse event (TAE). Leveraging combinations of these models, we present ML4CAD, a novel personalized prescriptive algorithm. Considering the recommendations of multiple predictive models at once, the goal of ML4CAD is to identify for every patient the therapy with the best expected TAE using a voting mechanism. We evaluate its performance by measuring the prescription effectiveness and robustness under alternative ground truths. We show that our methodology improves the expected TAE upon the current baseline by 24.11%, increasing it from 4.56 to 5.66 years. The algorithm performs particularly well for the male (24.3% improvement) and Hispanic (58.41% improvement) subpopulations. Finally, we create an interactive interface, providing physicians with an intuitive, accurate, readily implementable, and effective tool.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10729-020-09522-4en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titlePersonalized treatment for coronary artery disease patients: a machine learning approachen_US
dc.typeArticleen_US
dc.contributor.departmentSloan School of Managementen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-11-19T04:48:55Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media, LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-11-19T04:48:55Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version