Show simple item record

dc.contributor.authorLi, Xin
dc.contributor.authorNie, Zhang-Yu
dc.contributor.authorTian, Yu
dc.date.accessioned2022-09-19T19:17:58Z
dc.date.available2021-09-20T17:41:08Z
dc.date.available2022-09-19T19:17:58Z
dc.date.issued2020-09
dc.identifier.issn1029-8479
dc.identifier.urihttps://hdl.handle.net/1721.1/131963.2
dc.description.abstractAbstract Tuning a very simple two-component holographic superfluid model, we can have a first order phase transition between two superfluid phases in the probe limit. In- spired by the potential landscape discussion, an intuitive physical picture for systems with first order phase transitions is provided. We stress that holography perfectly offers a generalized thermodynamic description of certain strongly coupled systems even out of local equilibrium, which enables us to carefully study domain wall structures of the system under first order phase transitions, either static or in real time dynamics. We numerically construct the 1D domain wall configuration and compute the surface tension of the domain wall from its generalized grand potential. We also numerically simulate the real time dynamics of a 2D bubble nucleation process (holographic boiling). The surface tension of the 1D domain wall nicely matches the final state of the 2D bubble nucleation process when the bubble radius is large enough.en_US
dc.description.sponsorshipNSFC (11675015)en_US
dc.description.sponsorshipNSFC (11975235)en_US
dc.description.sponsorshipNSFC (11565017)en_US
dc.description.sponsorshipNSFC (11881240248)en_US
dc.description.sponsorshipNSFC (11965013)en_US
dc.description.sponsorshipShanghai Key Laboratory of High Temperature Superconductors (No. 14DZ2260700)en_US
dc.description.sponsorshipStrategic Priority Research Program of the Chinese Academy of Sciences” (XDB23030000)en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://dx.doi.org/10.1007/JHEP09(2020)063en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleHolographic boiling and generalized thermodynamic description beyond local equilibriumen_US
dc.typeArticleen_US
dc.identifier.citationJournal of High Energy Physics. 2020 Sep 08;2020(9):63en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.relation.journalJournal of High Energy Physicsen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-12-27T05:05:33Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2020-12-27T05:05:33Z
mit.journal.volume2020en_US
mit.journal.issue9en_US
mit.licensePUBLISHER_CC
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version