Show simple item record

dc.contributor.authorHong, Letong
dc.contributor.authorZhang, Shengtong
dc.date.accessioned2021-09-20T17:41:11Z
dc.date.available2021-09-20T17:41:11Z
dc.date.issued2021-02-19
dc.identifier.urihttps://hdl.handle.net/1721.1/131971
dc.description.abstractAbstract Let $$Q_n(z)$$ Q n ( z ) be the polynomials associated with the Nekrasov–Okounkov formula $$\begin{aligned} \sum _{n\ge 1} Q_n(z) q^n := \prod _{m = 1}^\infty (1 - q^m)^{-z - 1}. \end{aligned}$$ ∑ n ≥ 1 Q n ( z ) q n : = ∏ m = 1 ∞ ( 1 - q m ) - z - 1 . In this paper we partially answer a conjecture of Heim and Neuhauser, which asks if $$Q_n(z)$$ Q n ( z ) is unimodal, or stronger, log-concave for all $$n \ge 1$$ n ≥ 1 . Through a new recursive formula, we show that if $$A_{n,k}$$ A n , k is the coefficient of $$z^k$$ z k in $$Q_n(z)$$ Q n ( z ) , then $$A_{n,k}$$ A n , k is log-concave in k for $$k \ll n^{1/6}/\log n$$ k ≪ n 1 / 6 / log n and monotonically decreasing for $$k \gg \sqrt{n}\log n$$ k ≫ n log n . We also propose a conjecture that can potentially close the gap.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s40993-021-00244-2en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titleTowards Heim and Neuhauser’s unimodality conjecture on the Nekrasov–Okounkov polynomialsen_US
dc.typeArticleen_US
dc.identifier.citationResearch in Number Theory. 2021 Feb 19;7(1):17en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-02-20T04:30:58Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2021-02-20T04:30:57Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record