MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Game tree search for minimizing detectability and maximizing visibility

Author(s)
Zhang, Zhongshun; Smereka, Jonathon M.; Lee, Joseph; Zhou, Lifeng; Sung, Yoonchang; Tokekar, Pratap; ... Show more Show less
Thumbnail
Download10514_2020_9963_ReferencePDF.pdf (2.846Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract We introduce and study the problem of planning a trajectory for an agent to carry out a scouting mission while avoiding being detected by an adversarial opponent. This introduces a multi-objective version of classical visibility-based target search and pursuit-evasion problem. In our formulation, the agent receives a positive reward for increasing its visibility (by exploring new regions) and a negative penalty every time it is detected by the opponent. The objective is to find a finite-horizon path for the agent that balances the trade off between maximizing visibility and minimizing detectability. We model this problem as a discrete, sequential, two-player, zero-sum game. We use two types of game tree search algorithms to solve this problem: minimax search tree and Monte-Carlo search tree. Both search trees can yield the optimal policy but may require possibly exponential computational time and space. We first propose three pruning techniques to reduce the computational time while preserving optimality guarantees. When the agent and the opponent are located far from each other initially, we present a variable resolution technique with longer planning horizon to further reduce computational time. Simulation results show the effectiveness of the proposed strategies in terms of computational time.
Date issued
2021-01-20
URI
https://hdl.handle.net/1721.1/131973
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
Springer US

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.