MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessment of soil liquefaction potential: a case study for Moulvibazar town, Sylhet, Bangladesh

Author(s)
Hossain, Md. S; Kamal, A. S M M; Rahman, Md. Z; Farazi, Atikul H; Mondal, Dhiman R; Mahmud, Tonoy; Ferdous, Nasim; ... Show more Show less
Thumbnail
Download42452_2020_2582_ReferencePDF.pdf (1.090Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract Liquefaction can intensify the destruction caused by an earthquake; thus, a region with high liquefaction potential could be more disastrous. Bangladesh is surrounded by the Indo-Burma Folded Belt in the east, the Dauki Fault and Himalayan Syntaxis in the north that are known to have occurred high magnitude earthquakes (e.g., Mw > 7) in the past. Therefore, assessing seismic hazards in the regions that are economically growing fast is of great interest. Among many other hazard assessment parameters, soil liquefaction potential index (LPI) can be used to assess seismic hazards. In this study, we have assessed the seismic hazard potential for a small town (Moulvibazar) in the northeast Bangladesh documenting liquefaction potential indices for different surface geological units using an earthquake of moment magnitude Mw 8 having a peak horizontal ground acceleration (PGA) of 0.36 g. Twenty-five standard penetration test (SPT) boreholes were completed within the study area to obtain SPT-N values for two surface geological units: (1) Holo–Pleistocene low elevated terrace deposits (Zone 1) and (2) Holocene flood plain deposits (Zone 2). Using the SPT-N values, the LPI values have been calculated for the soil profile of each borehole. The LPI values in the town vary from 0 to 42.33, whereas values from 1.42 to 7.52 are in Zone 1 and values from 0 to 42.34 are in Zone 2. It has been predicted that 42% and 78% areas of Zone 1 and Zone 2, respectively, might exhibit surface manifestation of liquefaction. The results of this study can be used for seismic risk management of Moulvibazar town.
Date issued
2020-03-30
URI
https://hdl.handle.net/1721.1/131985
Department
Haystack Observatory
Publisher
Springer International Publishing
Citation
SN Applied Sciences. 2020 Mar 30;2(4):777
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.