MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of an RTD-Based Flowsheet Modeling Framework for the Assessment of In-Process Control Strategies

Author(s)
Tian, Geng; Koolivand, Abdollah; Gu, Zongyu; Orella, Michael; Shaw, Ryan; O’Connor, Thomas F; ... Show more Show less
Thumbnail
Download12249_2020_1913_ReferencePDF.pdf (1.971Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract Continuous manufacturing (CM) is an emerging technology which can improve pharmaceutical manufacturing and reduce drug product quality issues. One challenge that needs to be addressed when adopting CM technology is material traceability through the entire continuous process, which constitutes one key aspect of control strategy. Residence time distribution (RTD) plays an important role in material traceability as it characterizes the material spreading through the process. The propagation of upstream disturbances could be predictively tracked through the entire process by convolution of the disturbance and the RTD. The present study sets up the RTD-based modeling framework in a commonly used process modeling environment, gPROMS, and integrates it with existing modules and built-in tools (e.g., parameter estimation). Concentration calculations based on the convolution integral requires access to historical stream property information, which is not readily available in flowsheet modeling platforms. Thus, a novel approach is taken whereby a partial differential equation is used to propagate and store historical data as the simulation marches forward in time. Other stream properties not modeled by an RTD are determined in auxiliary modules. To illustrate the application of the framework, an integrated RTD-auxiliary model for a continuous direct compression manufacturing line was developed. An excellent agreement was found between the model predictions and experiments. The validated model was subsequently used to assess in-process control strategies for feeder and material traceability through the process. Our simulation results show that the employed modeling approach facilitates risk-based assessment of the continuous line by promoting our understanding on the process.
Date issued
2021-01-05
URI
https://hdl.handle.net/1721.1/131990
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Springer International Publishing
Citation
AAPS PharmSciTech. 2021 Jan 05;22(1):25
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.