MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-perturbative geometries for planar N $$ \mathcal{N} $$ = 4 SYM amplitudes

Author(s)
Arkani-Hamed, Nima; Lam, Thomas; Spradlin, Marcus
Thumbnail
Download13130_2021_Article_15024.pdf (295.4Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract There is a remarkable well-known connection between the G(4, n) cluster algebra and n-particle amplitudes in N $$ \mathcal{N} $$ = 4 SYM theory. For n ≥ 8 two long-standing open questions have been to find a mathematically natural way to identify a finite list of amplitude symbol letters from among the infinitely many cluster variables, and to find an explanation for certain algebraic functions, such as the square roots of four-mass-box type, that are expected to appear in symbols but are not cluster variables. In this letter we use the notion of “stringy canonical forms” to construct polytopal realizations of certain compactifications of (the positive part of) the configuration space Confn(ℙk−1) ≅ G(k, n)/T that are manifestly finite for all k and n. Some facets of these polytopes are naturally associated to cluster variables, while others are naturally associated to algebraic functions constructed from Lusztig’s canonical basis. For (k, n) = (4, 8) the latter include precisely the expected square roots, revealing them to be related to certain “overpositive” functions of the kinematical invariants.
Date issued
2021-03-05
URI
https://hdl.handle.net/1721.1/132047
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg
Citation
Journal of High Energy Physics. 2021 Mar 05;2021(3):65
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.