MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Serre–Tate theory for Shimura varieties of Hodge type

Author(s)
Shankar, Ananth N.; Zhou, Rong
Thumbnail
Download209_2020_2556_ReferencePDF.pdf (353.9Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract We study the formal neighbourhood of a point in the $$\mu $$ μ -ordinary locus of an integral model of a Hodge type Shimura variety. We show that this formal neighbourhood has a structure of a “shifted cascade”. Moreover we show that the CM points on the formal neighbourhood are dense and that the identity section of the shifted cascade corresponds to a lift of the abelian variety which has a characterization in terms of its endomorphisms, analogous to the Serre–Tate canonical lift of an ordinary abelian variety.
Date issued
2020-07-15
URI
https://hdl.handle.net/1721.1/132050
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.