MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chaos exponents of SYK traversable wormholes

Author(s)
Nosaka, Tomoki; Numasawa, Tokiro
Thumbnail
Download13130_2021_Article_14876.pdf (5.514Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract In this paper we study the chaos exponent, the exponential growth rate of the out-of-time-ordered four point functions, in a two coupled SYK models which exhibits a first order phase transition between the high temperature black hole phase and the low temperature gapped phase interpreted as a traversable wormhole. We see that as the temperature decreases the chaos exponent exhibits a discontinuous fall-off from the value of order the universal bound 2π/β at the critical temperature of the phase transition, which is consistent with the expected relation between black holes and strong chaos. Interestingly, the chaos exponent is small but non-zero even in the wormhole phase. This is surprising but consistent with the observation on the decay rate of the two point function [1], and we found the chaos exponent and the decay rate indeed obey the same temperature dependence in this regime. We also studied the chaos exponent of a closely related model with single SYK term, and found that the chaos exponent of this model is always greater than that of the two coupled model in the entire parameter space.
Date issued
2021-02-17
URI
https://hdl.handle.net/1721.1/132099
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Publisher
Springer Berlin Heidelberg
Citation
Journal of High Energy Physics. 2021 Feb 17;2021(2):150
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.