On L-functions of modular elliptic curves and certain K3 surfaces
Author(s)
Amir, Malik; Hong, Letong
Download11139_2021_Article_388.pdf (354.2Kb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Abstract
Inspired by Lehmer’s conjecture on the non-vanishing of the Ramanujan
$$\tau $$
τ
-function, one may ask whether an odd integer
$$\alpha $$
α
can be equal to
$$\tau (n)$$
τ
(
n
)
or any coefficient of a newform f(z). Balakrishnan, Craig, Ono and Tsai used the theory of Lucas sequences and Diophantine analysis to characterize non-admissible values of newforms of even weight
$$k\ge 4$$
k
≥
4
. We use these methods for weight 2 and 3 newforms and apply our results to L-functions of modular elliptic curves and certain K3 surfaces with Picard number
$$\ge 19$$
≥
19
. In particular, for the complete list of weight 3 newforms
$$f_\lambda (z)=\sum a_\lambda (n)q^n$$
f
λ
(
z
)
=
∑
a
λ
(
n
)
q
n
that are
$$\eta $$
η
-products, and for
$$N_\lambda $$
N
λ
the conductor of some elliptic curve
$$E_\lambda $$
E
λ
, we show that if
$$|a_\lambda (n)|<100$$
|
a
λ
(
n
)
|
<
100
is odd with
$$n>1$$
n
>
1
and
$$(n,2N_\lambda )=1$$
(
n
,
2
N
λ
)
=
1
, then
$$\begin{aligned} a_\lambda (n) \in&\{-5,9,\pm 11,25, \pm 41, \pm 43, -45,\pm 47,49, \pm 53,55, \pm 59, \pm 61,\\&\pm 67, -69,\pm 71,\pm 73,75, \pm 79,\pm 81, \pm 83, \pm 89,\pm 93 \pm 97, 99\}. \end{aligned}$$
a
λ
(
n
)
∈
{
-
5
,
9
,
±
11
,
25
,
±
41
,
±
43
,
-
45
,
±
47
,
49
,
±
53
,
55
,
±
59
,
±
61
,
±
67
,
-
69
,
±
71
,
±
73
,
75
,
±
79
,
±
81
,
±
83
,
±
89
,
±
93
±
97
,
99
}
.
Assuming the Generalized Riemann Hypothesis, we can rule out a few more possibilities leaving
$$\begin{aligned} a_\lambda (n) \in \{-5,9,\pm 11,25,-45,49,55,-69,75,\pm 81,\pm 93, 99\}. \end{aligned}$$
a
λ
(
n
)
∈
{
-
5
,
9
,
±
11
,
25
,
-
45
,
49
,
55
,
-
69
,
75
,
±
81
,
±
93
,
99
}
.
Date issued
2021-04-01Department
Massachusetts Institute of Technology. Department of MathematicsPublisher
Springer US