Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/132120.2

Show simple item record

dc.contributor.authorCano-Renteria, Fidel
dc.contributor.authorTegmark, Max
dc.contributor.authorSoljacic, Marin
dc.contributor.authorJoannopoulos, John D.
dc.contributor.authorPeurifoy, John
dc.contributor.authorShen, Yichen
dc.contributor.authorJing, Li
dc.contributor.authorYang, Yi
dc.contributor.authorDeLacy, Brendan G.
dc.date.accessioned2021-09-20T18:21:05Z
dc.date.available2021-09-20T18:21:05Z
dc.identifier.isbn9781510615373
dc.identifier.isbn9781510615380
dc.identifier.urihttps://hdl.handle.net/1721.1/132120
dc.description.abstract© 2018 SPIE. We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find the network needs to be trained on only a small sampling of the data in order to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used solve nanophotonic inverse design problems by using back-propogation - where the gradient is analytical, not numerical.en_US
dc.publisherSPIE-Intl Soc Optical Engen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/12.2289195en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSPIEen_US
dc.titleNanophotonic particle simulation and inverse design using artificial neural networksen_US
dc.typeArticleen_US
dc.identifier.citationCano-Renteria, Fidel, Max Tegmark, Marin Soljacic, John D. Joannopoulos, John Peurifoy, Yichen Shen, Li Jing, Yi Yang, and Brendan G. DeLacy. “Nanophotonic Particle Simulation and Inverse Design Using Artificial Neural Networks.” Edited by Marek Osiński, Yasuhiko Arakawa, and Bernd Witzigmann. Physics and Simulation of Optoelectronic Devices XXVI (February 23, 2018). doi:10.1117/12.2289195.en_US
dc.relation.journalPhysics and Simulation of Optoelectronic Devices XXVIen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-03-28T17:13:35Z
dspace.orderedauthorsCano-Renteria, Fidel; Tegmark, Max; Soljacic, Marin; Joannopoulos, John D.; Peurifoy, John; Shen, Yichen; Jing, Li; Yang, Yi; DeLacy, Brendan G.en_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T12:16:48Z
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version