dc.contributor.author | Ferber, Asaf | |
dc.contributor.author | Jain, Vishesh | |
dc.date.accessioned | 2022-08-03T18:12:32Z | |
dc.date.available | 2021-09-20T18:21:14Z | |
dc.date.available | 2022-08-03T18:12:32Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/132173.2 | |
dc.description.abstract | <jats:p>Let <jats:inline-formula>
<jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline1" xlink:type="simple" /><jats:tex-math>$M_{n}$</jats:tex-math></jats:alternatives>
</jats:inline-formula> denote a random symmetric <jats:inline-formula>
<jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline2" xlink:type="simple" /><jats:tex-math>$n\times n$</jats:tex-math></jats:alternatives>
</jats:inline-formula> matrix whose upper-diagonal entries are independent and identically distributed Bernoulli random variables (which take values <jats:inline-formula>
<jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline3" xlink:type="simple" /><jats:tex-math>$1$</jats:tex-math></jats:alternatives>
</jats:inline-formula> and <jats:inline-formula>
<jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline4" xlink:type="simple" /><jats:tex-math>$-1$</jats:tex-math></jats:alternatives>
</jats:inline-formula> with probability <jats:inline-formula>
<jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline5" xlink:type="simple" /><jats:tex-math>$1/2$</jats:tex-math></jats:alternatives>
</jats:inline-formula> each). It is widely conjectured that <jats:inline-formula>
<jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline6" xlink:type="simple" /><jats:tex-math>$M_{n}$</jats:tex-math></jats:alternatives>
</jats:inline-formula> is singular with probability at most <jats:inline-formula>
<jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline7" xlink:type="simple" /><jats:tex-math>$(2+o(1))^{-n}$</jats:tex-math></jats:alternatives>
</jats:inline-formula>. On the other hand, the best known upper bound on the singularity probability of <jats:inline-formula>
<jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline8" xlink:type="simple" /><jats:tex-math>$M_{n}$</jats:tex-math></jats:alternatives>
</jats:inline-formula>, due to Vershynin (2011), is <jats:inline-formula>
<jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline9" xlink:type="simple" /><jats:tex-math>$2^{-n^{c}}$</jats:tex-math></jats:alternatives>
</jats:inline-formula>, for some unspecified small constant <jats:inline-formula>
<jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline10" xlink:type="simple" /><jats:tex-math>$c>0$</jats:tex-math></jats:alternatives>
</jats:inline-formula>. This improves on a polynomial singularity bound due to Costello, Tao, and Vu (2005), and a bound of Nguyen (2011) showing that the singularity probability decays faster than any polynomial. In this paper, improving on all previous results, we show that the probability of singularity of <jats:inline-formula>
<jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline11" xlink:type="simple" /><jats:tex-math>$M_{n}$</jats:tex-math></jats:alternatives>
</jats:inline-formula> is at most <jats:inline-formula>
<jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline12" xlink:type="simple" /><jats:tex-math>$2^{-n^{1/4}\sqrt{\log n}/1000}$</jats:tex-math></jats:alternatives>
</jats:inline-formula> for all sufficiently large <jats:inline-formula>
<jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline13" xlink:type="simple" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives>
</jats:inline-formula>. The proof utilizes and extends a novel combinatorial approach to discrete random matrix theory, which has been recently introduced by the authors together with Luh and Samotij.</jats:p> | en_US |
dc.language.iso | en | |
dc.publisher | Cambridge University Press (CUP) | en_US |
dc.relation.isversionof | 10.1017/fms.2019.21 | en_US |
dc.rights | Creative Commons Attribution 4.0 International license | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Cambridge University Press | en_US |
dc.title | SINGULARITY OF RANDOM SYMMETRIC MATRICES—A COMBINATORIAL APPROACH TO IMPROVED BOUNDS | en_US |
dc.type | Article | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2019-10-22T15:39:19Z | |
dspace.date.submission | 2019-10-22T15:39:22Z | |
mit.metadata.status | Publication Information Needed | en_US |