Show simple item record

dc.contributor.authorFerber, Asaf
dc.contributor.authorJain, Vishesh
dc.date.accessioned2022-08-03T18:12:32Z
dc.date.available2021-09-20T18:21:14Z
dc.date.available2022-08-03T18:12:32Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/132173.2
dc.description.abstract<jats:p>Let <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline1" xlink:type="simple" /><jats:tex-math>$M_{n}$</jats:tex-math></jats:alternatives> </jats:inline-formula> denote a random symmetric <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline2" xlink:type="simple" /><jats:tex-math>$n\times n$</jats:tex-math></jats:alternatives> </jats:inline-formula> matrix whose upper-diagonal entries are independent and identically distributed Bernoulli random variables (which take values <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline3" xlink:type="simple" /><jats:tex-math>$1$</jats:tex-math></jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline4" xlink:type="simple" /><jats:tex-math>$-1$</jats:tex-math></jats:alternatives> </jats:inline-formula> with probability <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline5" xlink:type="simple" /><jats:tex-math>$1/2$</jats:tex-math></jats:alternatives> </jats:inline-formula> each). It is widely conjectured that <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline6" xlink:type="simple" /><jats:tex-math>$M_{n}$</jats:tex-math></jats:alternatives> </jats:inline-formula> is singular with probability at most <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline7" xlink:type="simple" /><jats:tex-math>$(2+o(1))^{-n}$</jats:tex-math></jats:alternatives> </jats:inline-formula>. On the other hand, the best known upper bound on the singularity probability of <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline8" xlink:type="simple" /><jats:tex-math>$M_{n}$</jats:tex-math></jats:alternatives> </jats:inline-formula>, due to Vershynin (2011), is <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline9" xlink:type="simple" /><jats:tex-math>$2^{-n^{c}}$</jats:tex-math></jats:alternatives> </jats:inline-formula>, for some unspecified small constant <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline10" xlink:type="simple" /><jats:tex-math>$c&gt;0$</jats:tex-math></jats:alternatives> </jats:inline-formula>. This improves on a polynomial singularity bound due to Costello, Tao, and Vu (2005), and a bound of Nguyen (2011) showing that the singularity probability decays faster than any polynomial. In this paper, improving on all previous results, we show that the probability of singularity of <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline11" xlink:type="simple" /><jats:tex-math>$M_{n}$</jats:tex-math></jats:alternatives> </jats:inline-formula> is at most <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline12" xlink:type="simple" /><jats:tex-math>$2^{-n^{1/4}\sqrt{\log n}/1000}$</jats:tex-math></jats:alternatives> </jats:inline-formula> for all sufficiently large <jats:inline-formula> <jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:href="S2050509419000215_inline13" xlink:type="simple" /><jats:tex-math>$n$</jats:tex-math></jats:alternatives> </jats:inline-formula>. The proof utilizes and extends a novel combinatorial approach to discrete random matrix theory, which has been recently introduced by the authors together with Luh and Samotij.</jats:p>en_US
dc.language.isoen
dc.publisherCambridge University Press (CUP)en_US
dc.relation.isversionof10.1017/fms.2019.21en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceCambridge University Pressen_US
dc.titleSINGULARITY OF RANDOM SYMMETRIC MATRICES—A COMBINATORIAL APPROACH TO IMPROVED BOUNDSen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-10-22T15:39:19Z
dspace.date.submission2019-10-22T15:39:22Z
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version