Show simple item record

dc.contributor.authorBufetov, Alexey
dc.contributor.authorGorin, Vadim
dc.date.accessioned2022-07-20T13:41:00Z
dc.date.available2021-09-20T18:21:17Z
dc.date.available2022-07-20T13:41:00Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/132186.2
dc.description.abstract© 2019 Duke University Press. All rights reserved. A combination of direct and inverse Fourier transforms on the unitary group U(N) identifies normalized characters with probability measures on N-tuples of integers. We develop the N → ∞ version of this correspondence by matching the asymptotics of partial derivatives at the identity of logarithm of characters with the law of large numbers and the central limit theorem for global behavior of corresponding random N-tuples. As one application we study fluctuations of the height function of random domino and lozenge tilings of a rich class of domains. In this direction we prove the Kenyon- Okounkov conjecture (which predicts asymptotic Gaussianity and the exact form of the covariance) for a family of non-simply-connected polygons. Another application is a central limit theorem for the U(N) quantum random walk with random initial data.en_US
dc.language.isoen
dc.publisherDuke University Pressen_US
dc.relation.isversionof10.1215/00127094-2019-0023en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleFourier transform on high-dimensional unitary groups with applications to random tilingsen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-11-13T15:35:48Z
dspace.date.submission2019-11-13T15:35:54Z
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version