MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sonification based de novo protein design using artificial intelligence, structure prediction, and analysis using molecular modeling

Author(s)
Yu, Chi Hua; Buehler, Markus J
Thumbnail
DownloadPublished version (2.797Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We report the use of a deep learning model to design de novo proteins, based on the interplay of elementary building blocks via hierarchical patterns. The deep neural network model is based on translating protein sequences and structural information into a musical score that features different pitches for each of the amino acids, and variations in note length and note volume reflecting secondary structure information and information about the chain length and distinct protein molecules. We train a deep learning model whose architecture is composed of several long short-term memory units from data consisting of musical representations of proteins classified by certain features, focused here on alpha-helix rich proteins. Using the deep learning model, we then generate de novo musical scores and translate the pitch information and chain lengths into sequences of amino acids. We use a Basic Local Alignment Search Tool to compare the predicted amino acid sequences against known proteins, and estimate folded protein structures using the Optimized protein fold RecognitION method (ORION) and MODELLER. We find that the method proposed here can be used to design de novo proteins that do not exist yet, and that the designed proteins fold into specified secondary structures. We validate the newly predicted protein by molecular dynamics equilibration in explicit water and subsequent characterization using a normal mode analysis. The method provides a tool to design novel protein materials that could find useful applications as materials in biology, medicine, and engineering.
Date issued
2020-03
URI
https://hdl.handle.net/1721.1/132192
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
APL Bioengineering
Publisher
AIP Publishing
Citation
Yu, Chi-Hua, and Markus J. Buehler. “Sonification Based de Novo Protein Design Using Artificial Intelligence, Structure Prediction, and Analysis Using Molecular Modeling.” APL Bioengineering 4, 1 (March 2020): 016108. © 2020 Authors
Version: Final published version
ISSN
2473-2877

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.