Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/132258.2

Show simple item record

dc.contributor.authorShi, Alvin
dc.contributor.authorKasumova, Gyulnara G
dc.contributor.authorMichaud, William A
dc.contributor.authorCintolo-Gonzalez, Jessica
dc.contributor.authorDíaz-Martínez, Marta
dc.contributor.authorOhmura, Jacqueline
dc.contributor.authorMehta, Arnav
dc.contributor.authorChien, Isabel
dc.contributor.authorFrederick, Dennie T
dc.contributor.authorCohen, Sonia
dc.contributor.authorPlana, Deborah
dc.contributor.authorJohnson, Douglas
dc.contributor.authorFlaherty, Keith T
dc.contributor.authorSullivan, Ryan J
dc.contributor.authorKellis, Manolis
dc.contributor.authorBoland, Genevieve M
dc.date.accessioned2021-09-20T18:21:31Z
dc.date.available2021-09-20T18:21:31Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/132258
dc.description.abstractImmune checkpoint inhibitors (ICIs) show promise, but most patients do not respond. We identify and validate biomarkers from extracellular vesicles (EVs), allowing non-invasive monitoring of tumor- intrinsic and host immune status, as well as a prediction of ICI response. We undertook transcriptomic profiling of plasma-derived EVs and tumors from 50 patients with metastatic melanoma receiving ICI, and validated with an independent EV-only cohort of 30 patients. Plasma-derived EV and tumor transcriptomes correlate. EV profiles reveal drivers of ICI resistance and melanoma progression, exhibit differentially expressed genes/pathways, and correlate with clinical response to ICI. We created a Bayesian probabilistic deconvolution model to estimate contributions from tumor and non-tumor sources, enabling interpretation of differentially expressed genes/pathways. EV RNA-seq mutations also segregated ICI response. EVs serve as a non-invasive biomarker to jointly probe tumor-intrinsic and immune changes to ICI, function as predictive markers of ICI responsiveness, and monitor tumor persistence and immune activation.
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.isversionof10.1126/sciadv.abb3461
dc.rightsCreative Commons Attribution NonCommercial License 4.0
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourceScience Advances
dc.titlePlasma-derived extracellular vesicle analysis and deconvolution enable prediction and tracking of melanoma checkpoint blockade outcome
dc.typeArticle
dc.relation.journalScience Advances
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-01-07T18:51:48Z
dspace.orderedauthorsShi, A; Kasumova, GG; Michaud, WA; Cintolo-Gonzalez, J; Díaz-Martínez, M; Ohmura, J; Mehta, A; Chien, I; Frederick, DT; Cohen, S; Plana, D; Johnson, D; Flaherty, KT; Sullivan, RJ; Kellis, M; Boland, GM
dspace.date.submission2021-01-07T18:51:58Z
mit.journal.volume6
mit.journal.issue46
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version