Show simple item record

dc.contributor.authorDe Stefani, Lorenzo
dc.contributor.authorSpiegelberg, Leonhard F
dc.contributor.authorUpfal, Eli
dc.contributor.authorKraska, Tim
dc.date.accessioned2022-07-18T20:43:46Z
dc.date.available2021-09-20T18:21:40Z
dc.date.available2022-07-18T20:43:46Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/132285.2
dc.description.abstract© 2019 IEEE. Recently, there have been several proposals to develop visual recommendation systems. The most advanced systems aim to recommend visualizations, which help users to find new correlations or identify an interesting deviation based on the current context of the user's analysis. However, when recommending a visualization to a user, there is an inherent risk to visualize random fluctuations rather than solely true patterns: a problem largely ignored by current techniques. In this paper, we present VizCertify, a novel framework to improve the performance of visual recommendation systems by quantifying the statistical significance of recommended visualizations. The proposed methodology allows to control the probability of misleading visual recommendations using both classical statistical testing procedures and a novel application of the Vapnik Chervonenkis (VC) dimension towards visualization recommendation which results in an effective criterion to decide whether a recommendation corresponds to a true phenomenon or not.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/DSAA.2019.00039en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceother univ websiteen_US
dc.titleVizCertify: A Framework for Secure Visual Data Explorationen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalProceedings - 2019 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2019en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-01-11T17:18:07Z
dspace.orderedauthorsDe Stefani, L; Spiegelberg, LF; Upfal, E; Kraska, Ten_US
dspace.date.submission2021-01-11T17:18:11Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version