Tsunami: a learned multi-dimensional index for correlated data and skewed workloads
Author(s)
Ding, Jialin; Nathan, Vikram; Alizadeh, Mohammad; Kraska, Tim
DownloadPublished version (1.913Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
© 2020, VLDB Endowment. All rights reserved. Filtering data based on predicates is one of the most fundamental operations for any modern data warehouse. Techniques to accelerate the execution of filter expressions include clustered indexes, specialized sort orders (e.g., Z-order), multi-dimensional indexes, and, for high selectivity queries, secondary indexes. However, these schemes are hard to tune and their performance is inconsistent. Recent work on learned multi-dimensional indexes has introduced the idea of automatically optimizing an index for a particular dataset and workload. However, the performance of that work suffers in the presence of correlated data and skewed query workloads, both of which are common in real applications. In this paper, we introduce Tsunami, which addresses these limitations to achieve up to 6× faster query performance and up to 8× smaller index size than existing learned multi-dimensional indexes, in addition to up to 11× faster query performance and 170× smaller index size than optimally-tuned traditional indexes.
Date issued
2020Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Proceedings of the VLDB Endowment
Publisher
VLDB Endowment