Show simple item record

dc.contributor.authorUdrescu, Silviu-Marian
dc.contributor.authorTegmark, Max Erik
dc.date.accessioned2022-07-20T21:28:52Z
dc.date.available2021-09-20T18:22:07Z
dc.date.available2022-07-20T21:28:52Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/132379.2
dc.description.abstract© 2020 The Authors. A core challenge for both physics and artificial intelligence (AI) is symbolic regression: Finding a symbolic expression that matches data from an unknown function. Although this problem is likely to be NP-hard in principle, functions of practical interest often exhibit symmetries, separability, compositionality, and other simplifying properties. In this spirit, we develop a recursive multidimensional symbolic regression algorithm that combines neural network fitting with a suite of physics-inspired techniques. We apply it to 100 equations from the Feynman Lectures on Physics, and it discovers all of them, while previous publicly available software cracks only 71; for a more difficult physics-based test set, we improve the state-of-the-art success rate from 15 to 90%.en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionof10.1126/SCIADV.AAY2631en_US
dc.rightsCreative Commons Attribution NonCommercial License 4.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceScience Advancesen_US
dc.titleAI Feynman: A physics-inspired method for symbolic regressionen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentCenter for Brains, Minds, and Machinesen_US
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-11-09T19:29:37Z
dspace.orderedauthorsUdrescu, S-M; Tegmark, Men_US
dspace.date.submission2020-11-09T19:29:39Z
mit.journal.volume6en_US
mit.journal.issue16en_US
mit.licensePUBLISHER_CC
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version