Show simple item record

dc.contributor.authorLee, S.
dc.contributor.authorCorliss, Ross Cameron
dc.contributor.authorFriščic, I.
dc.contributor.authorBalewski, Jan T.
dc.contributor.authorBernauer, Jan Christopher
dc.contributor.authorEpstein, Charles S.
dc.contributor.authorFisher, P.
dc.contributor.authorHasell, Douglas K.
dc.contributor.authorJohnston, R
dc.contributor.authorMilner, Richard G
dc.contributor.authorMoran, P
dc.contributor.authorPalumbo, Daniel C.
dc.contributor.authorSteadman, Stephen G
dc.contributor.authorVogel, C.
dc.contributor.authorWang, Y.
dc.date.accessioned2022-09-12T20:22:08Z
dc.date.available2021-09-20T18:22:21Z
dc.date.available2022-09-12T20:22:08Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/132431.2
dc.description.abstract© 2019 Elsevier B.V. A windowless hydrogen gas target of nominal thickness 1019 cm−2 is an essential component of the DarkLight experiment, which is designed to utilize the megawatt electron beam at an Energy Recovery Linac (ERL). The design of such a target is challenging because the pressure drops by many orders of magnitude between the central, high-density section of the target and the surrounding beamline, resulting in laminar, transitional, and finally molecular flow regimes. The target system was assembled and operated at Jefferson Lab's Low Energy Recirculator Facility (LERF) in 2016, and subsequently underwent several revisions and calibration tests at MIT Bates in 2017. The system at dynamic equilibrium was simulated in COMSOL to provide a better understanding of its optimal operation at other working points. We have determined that a windowless gas target with sufficiently high density for DarkLight's experimental needs is feasible in an ERL environment.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/J.NIMA.2019.05.071en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleDesign and operation of a windowless gas target internal to a solenoidal magnet for use with a megawatt electron beamen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Nuclear Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.relation.journalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipmenten_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-10-21T17:35:10Z
dspace.orderedauthorsLee, S; Corliss, R; Friščić, I; Alarcon, R; Aulenbacher, S; Balewski, J; Benson, S; Bernauer, JC; Bessuille, J; Boyce, J; Coleman, J; Douglas, D; Epstein, CS; Fisher, P; Frierson, S; Garçon, M; Grames, J; Hasell, D; Hernandez-Garcia, C; Ihloff, E; Johnston, R; Jordan, K; Kazimi, R; Kelsey, J; Kohl, M; Liyanage, A; McCaughan, M; Milner, RG; Moran, P; Nazeer, J; Palumbo, D; Poelker, M; Randall, G; Steadman, SG; Tennant, C; Tschalär, C; Vidal, C; Vogel, C; Wang, Y; Zhang, Sen_US
dspace.date.submission2020-10-21T17:35:34Z
mit.journal.volume939en_US
mit.licensePUBLISHER_CC
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version