MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum maximin surfaces

Author(s)
Akers, Chris; Engelhardt, Netta; Penington, Geoff; Usatyuk, Mykhaylo
Thumbnail
DownloadPublished version (622.5Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We formulate a quantum generalization of maximin surfaces and show that a quantum maximin surface is identical to the minimal quantum extremal surface, introduced in the EW prescription. We discuss various subtleties and complications associated to a maximinimization of the bulk von Neumann entropy due to corners and unboundedness and present arguments that nonetheless a maximinimization of the UV-finite generalized entropy should be well-defined. We give the first general proof that the EW prescription satisfies entanglement wedge nesting and the strong subadditivity inequality. In addition, we apply the quantum maximin technology to prove that recently proposed generalizations of the EW prescription to nonholographic subsystems (including the so-called “quantum extremal islands”) also satisfy entanglement wedge nesting and strong subadditivity. Our results hold in the regime where backreaction of bulk quantum fields can be treated perturbatively in G ħ, but we emphasize that they are valid even when gradients of the bulk entropy are of the same order as variations in the area, a regime recently investigated in new models of black hole evaporation in AdS/CFT. N
Date issued
2020
URI
https://hdl.handle.net/1721.1/132501
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Journal
Journal of High Energy Physics
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.