Show simple item record

dc.contributor.authorOmran, A
dc.contributor.authorLevine, H
dc.contributor.authorKeesling, A
dc.contributor.authorSemeghini, G
dc.contributor.authorWang, TT
dc.contributor.authorEbadi, S
dc.contributor.authorBernien, H
dc.contributor.authorZibrov, AS
dc.contributor.authorPichler, H
dc.contributor.authorChoi, S
dc.contributor.authorCui, J
dc.contributor.authorRossignolo, M
dc.contributor.authorRembold, P
dc.contributor.authorMontangero, S
dc.contributor.authorCalarco, T
dc.contributor.authorEndres, M
dc.contributor.authorGreiner, M
dc.contributor.authorVuletic, Vladan
dc.contributor.authorLukin, MD
dc.date.accessioned2022-08-04T17:01:54Z
dc.date.available2021-09-20T18:22:56Z
dc.date.available2022-08-04T17:01:54Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/132541.2
dc.description.abstract2017 © The Authors Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging because such states are extremely fragile. Using a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states, we demonstrate the creation of “Schrödinger cat” states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is based on engineering the energy spectrum and using optimal control of the many-body system. We further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to distant sites in the array, establishing important ingredients for quantum information processing and quantum metrology.en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionof10.1126/SCIENCE.AAX9743en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcearXiven_US
dc.titleGeneration and manipulation of Schrödinger cat states in Rydberg atom arraysen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.relation.journalScienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-11-16T18:39:50Z
dspace.orderedauthorsOmran, A; Levine, H; Keesling, A; Semeghini, G; Wang, TT; Ebadi, S; Bernien, H; Zibrov, AS; Pichler, H; Choi, S; Cui, J; Rossignolo, M; Rembold, P; Montangero, S; Calarco, T; Endres, M; Greiner, M; Vuletić, V; Lukin, MDen_US
dspace.date.submission2020-11-16T18:40:02Z
mit.journal.volume365en_US
mit.journal.issue6453en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version