Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/132564.2

Show simple item record

dc.contributor.authorVogelsberger, Mark
dc.contributor.authorNelson, Dylan
dc.contributor.authorPillepich, Annalisa
dc.contributor.authorShen, Xuejian
dc.contributor.authorMarinacci, Federico
dc.contributor.authorSpringel, Volker
dc.contributor.authorPakmor, Rüdiger
dc.contributor.authorTacchella, Sandro
dc.contributor.authorWeinberger, Rainer
dc.contributor.authorTorrey, Paul
dc.contributor.authorHernquist, Lars
dc.date.accessioned2021-09-20T18:23:04Z
dc.date.available2021-09-20T18:23:04Z
dc.identifier.urihttps://hdl.handle.net/1721.1/132564
dc.description.abstract<jats:title>ABSTRACT</jats:title> <jats:p>The James Webb Space Telescope (JWST) promises to revolutionize our understanding of the early Universe, and contrasting its upcoming observations with predictions of the Λ cold dark matter model requires detailed theoretical forecasts. Here, we exploit the large dynamic range of the IllustrisTNG simulation suite, TNG50, TNG100, and TNG300, to derive multiband galaxy luminosity functions from z = 2 to z = 10. We put particular emphasis on the exploration of different dust attenuation models to determine galaxy luminosity functions for the rest-frame ultraviolet (UV), and apparent wide NIRCam bands. Our most detailed dust model is based on continuum Monte Carlo radiative transfer calculations employing observationally calibrated dust properties. This calibration results in constraints on the redshift evolution of the dust attenuation normalization and dust-to-metal ratios yielding a stronger redshift evolution of the attenuation normalization compared to most previous theoretical studies. Overall we find good agreement between the rest-frame UV luminosity functions and observational data for all redshifts, also beyond the regimes used for the dust model calibrations. Furthermore, we also recover the observed high-redshift (z = 4–6) UV luminosity versus stellar mass relation, the H α versus star formation rate relation, and the H α luminosity function at z = 2. The bright end (MUV &amp;gt; −19.5) cumulative galaxy number densities are consistent with observational data. For the F200W NIRCam band, we predict that JWST will detect ∼80 (∼200) galaxies with a signal-to-noise ratio of 10 (5) within the NIRCam field of view, $2.2\times 2.2 \, {\rm arcmin}^{2}$, for a total exposure time of $10^5\, {\rm s}$ in the redshift range z = 8 ± 0.5. These numbers drop to ∼10 (∼40) for an exposure time of $10^4\, {\rm s}$.</jats:p>en_US
dc.language.isoen
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionof10.1093/MNRAS/STAA137en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleHigh-redshift JWST predictions from IllustrisTNG: dust modelling and galaxy luminosity functionsen_US
dc.typeArticleen_US
dc.relation.journalMonthly Notices of the Royal Astronomical Societyen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-11-17T15:28:56Z
dspace.orderedauthorsVogelsberger, M; Nelson, D; Pillepich, A; Shen, X; Marinacci, F; Springel, V; Pakmor, R; Tacchella, S; Weinberger, R; Torrey, P; Hernquist, Len_US
dspace.date.submission2020-11-17T15:29:03Z
mit.journal.volume492en_US
mit.journal.issue4en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version