Show simple item record

dc.contributor.authorChu, Crystal K.
dc.contributor.authorJoseph, Alby J.
dc.contributor.authorLimjoco, Matthew D.
dc.contributor.authorYang, Jiawei
dc.contributor.authorBose, Suman
dc.contributor.authorThapa, Lavanya S.
dc.contributor.authorLanger, Robert S
dc.contributor.authorAnderson, Daniel Griffith
dc.date.accessioned2021-09-21T14:48:33Z
dc.date.available2021-09-21T14:48:33Z
dc.date.issued2020-11
dc.date.submitted2020-09
dc.identifier.issn0002-7863
dc.identifier.issn1520-5126
dc.identifier.urihttps://hdl.handle.net/1721.1/132609
dc.description.abstract© 2020 American Chemical Society. Polymer fibers with specific chemical and mechanical properties are key components of many biomaterials used for regenerative medicine and drug delivery. Here, we develop a bioinspired, low-energy process to produce mechanically tunable biopolymer fibers drawn from aqueous solutions. Hyaluronic acid (HA) forms dynamic cross-links with branched polyethylene glycol polymers end-functionalized with boronic acids of varied structure to produce extensible polymer networks. This dynamic fiber precursor (DFP) is directly drawn by pultrusion into HA fibers that display high aspect ratios, ranging from 4 to 20 μm in diameter and up to ∼10 m in length. Dynamic rheology measurements of the DFP and tensile testing of the resulting fibers reveal design considerations to tune the propensity for fiber formation and fiber mechanical properties, including the effect of polymer structure and concentration on elastic modulus, tensile strength, and ultimate strain. The materials' humidity-responsive contractile behavior, a unique property of spider silks rarely observed in synthetic materials, highlights possibilities for further biomimetic and stimulus-responsive fiber applications. This work demonstrates that chemical modification of dynamic interactions can be used to tune the mechanical properties of pultrusion-based fibers and their precursors.en_US
dc.description.sponsorshipLeona M. and Harry B. Helmsley Charitable Trust (Grant 2017PG-T1D027)en_US
dc.description.sponsorshipNIH (Grants F32DK118785, K99EB025254 and PDF-2015-90-A-N)en_US
dc.description.sponsorshipNational Cancer Institute (Grant P30-CA14051)en_US
dc.language.isoen
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/jacs.0c09691en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Anderson via Ye Lien_US
dc.titleChemical Tuning of Fibers Drawn from Extensible Hyaluronic Acid Networksen_US
dc.typeArticleen_US
dc.identifier.citationChu, Crystal K. et al. "Chemical Tuning of Fibers Drawn from Extensible Hyaluronic Acid Networks." Journal of the American Chemical Society 142, 46 (November 2020): 19715–19721. © 2020 American Chemical Societyen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.relation.journalJournal of the American Chemical Societyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-09-17T17:10:25Z
dspace.orderedauthorsChu, CK; Joseph, AJ; Limjoco, MD; Yang, J; Bose, S; Thapa, LS; Langer, R; Anderson, DGen_US
dspace.date.submission2021-09-17T17:10:30Z
mit.journal.volume142en_US
mit.journal.issue46en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusCompleteen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record