Show simple item record

dc.contributor.authorSchwalbe-Koda, Daniel
dc.contributor.authorKwon, Soonhyoung
dc.contributor.authorParis, Cecilia
dc.contributor.authorBello-Jurado, Estefania
dc.contributor.authorJensen, Zach
dc.contributor.authorOlivetti, Elsa A.
dc.contributor.authorWillhammar, Tom
dc.contributor.authorCorma, Avelino
dc.contributor.authorRomán- Leshkov, Yuriy
dc.contributor.authorMoliner, Manuel
dc.contributor.authorGómez-Bombarelli, Rafael
dc.date.accessioned2021-09-21T19:27:58Z
dc.date.available2021-09-21T19:27:58Z
dc.date.issued2021-09
dc.date.submitted2021-03
dc.identifier.issn0036-8075
dc.identifier.issn1095-9203
dc.identifier.urihttps://hdl.handle.net/1721.1/132618
dc.description.abstractZeolites are versatile catalysts and molecular sieves with large topological diversity, but managing phase competition in zeolite synthesis is an empirical, labor-intensive task. Here, we controlled phase selectivity in templated zeolite synthesis from first principles by combining high-throughput atomistic simulations, literature mining, human-computer interaction, synthesis, and characterization. Proposed binding metrics distilled from over 586,000 zeolite-molecule simulations reproduced the extracted literature and rationalize framework competition in the design of organic structure-directing agents. Energetic, geometric, and electrostatic descriptors of template molecules were found to regulate synthetic accessibility windows and aluminum distributions in pure-phase zeolites. Furthermore, these parameters allowed realizing an intergrowth zeolite through a single bi-selective template. The computation-first approach enabled controlling both zeolite synthesis and structure composition using a priori theoretical descriptors.en_US
dc.description.sponsorshipNational Science Foundation (Awards 1922311, 1922372 and 1922090)en_US
dc.description.sponsorshipOffice of Naval Research (Contract N00014-20-1-2280)en_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1126/science.abh3350en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Rafael Gomez-Bombarelli via Ye Lien_US
dc.titleA priori control of zeolite phase competition and intergrowth with high-throughput simulationsen_US
dc.typeArticleen_US
dc.identifier.citationSchwalbe-Koda, Daniel et al. "A priori control of zeolite phase competition and intergrowth with high-throughput simulations." Science (September 2021): 10.1126/science.abh3350. © American Association for the Advancement of Science.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Societyen_US
dc.relation.journalScienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2021-09-17T18:14:47Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusCompleteen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record