Show simple item record

dc.contributor.authorMcLean, Craig
dc.contributor.authorKujawinski, Elizabeth B
dc.date.accessioned2021-09-22T13:43:15Z
dc.date.available2021-09-22T13:43:15Z
dc.date.issued2020-03
dc.date.submitted2019-10
dc.identifier.issn0003-2700
dc.identifier.issn1520-6882
dc.identifier.urihttps://hdl.handle.net/1721.1/132622
dc.description.abstractUntargeted metabolomics experiments provide a snapshot of cellular metabolism but remain challenging to interpret due to the computational complexity involved in data processing and analysis. Prior to any interpretation, raw data must be processed to remove noise and to align mass-spectral peaks across samples. This step requires selection of dataset-specific parameters, as erroneous parameters can result in noise inflation. While several algorithms exist to automate parameter selection, each depends on gradient descent optimization functions. In contrast, our new parameter optimization algorithm, AutoTuner, obtains parameter estimates from raw data in a single step as opposed to many iterations. Here, we tested the accuracy and the run-time of AutoTuner in comparison to isotopologue parameter optimization (IPO), the most commonly used parameter selection tool, and compared the resulting parameters’ influence on the properties of feature tables after processing. We performed a Monte Carlo experiment to test the robustness of AutoTuner parameter selection and found that AutoTuner generated similar parameter estimates from random subsets of samples. We conclude that AutoTuner is a desirable alternative to existing tools, because it is scalable, highly robust, and very fast (∼100–1000× speed improvement from other algorithms going from days to minutes). AutoTuner is freely available as an R package through BioConductor.en_US
dc.description.sponsorshipSimons Foundation (Award 509034)en_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttps://doi.org/10.1021/acs.analchem.9b04804en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceACSen_US
dc.titleAutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processingen_US
dc.typeArticleen_US
dc.identifier.citationMcLean, Craig and Elizabeth B. Kujawinski. "AutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processing." Analytical Chemistry 92, 8 (March 2020): 5724–5732. © 2020 American Chemical Societyen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.relation.journalAnalytical Chemistryen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2020-06-10T18:49:34Z
mit.journal.volume92en_US
mit.journal.issue8en_US
mit.licensePUBLISHER_CC
mit.metadata.statusCompleteen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record