MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Autoperforation of two-dimensional materials to generate colloidal state machines capable of locomotion

Author(s)
Liu, Albert Tianxiang; Yang, Jing; LeMar, Lexy N.; Zhang, Ge; Pervan, Ana; Murphey, Todd D.; Strano, Michael S.; ... Show more Show less
Thumbnail
DownloadPublished version (1.110Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution Noncommercial 3.0 unported license https://creativecommons.org/licenses/by-nc/3.0/
Metadata
Show full item record
Abstract
A central ambition of the robotics field has been to increasingly miniaturize such systems, with perhaps the ultimate achievement being the synthetic microbe or cell sized machine. To this end, we have introduced and demonstrated prototypes of what we call colloidal state machines (CSMs) as particulate devices capable of integrating sensing, memory, and energy harvesting as well as other functions onto a single particle. One technique that we have introduced for creating CSMs based on 2D materials such as graphene or monolayer MoS₂ is “autoperforation”, where the nanometer-scale film is fractured around a designed strain field to produce structured particles upon liftoff. While CSMs have been demonstrated with functions such as memory, sensing, and energy harvesting, the property of locomotion has not yet been demonstrated. In this work, we introduce an inversion moulding technique compatible with autoperforation that allows for the patterning of an external catalytic surface that enables locomotion in an accompanying fuel bath. Optimal processing conditions for electroplating a catalytic Pt layer to one side of an autoperforated CSM are elucidated. The self-driven propulsion of the resulting Janus CSM in H₂O₂ is studied, including the average velocity, as a function of fluid surface tension and H₂O₂ concentration in the bath. Since machines have to encode for a specific task, this work summarizes efforts to create a microfluidic testbed that allows for CSM designs to be evaluated for the ultimate purpose of navigation through complex fluidic networks, such as the human circulatory system. We introduce two CSM designs that mimic aspects of human immunity to solve search and recruitment tasks in such environments. These results advance CSM design concepts closer to promising applications in medicine and other areas.
Date issued
2020-06
URI
https://hdl.handle.net/1721.1/132645
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Faraday Discussions
Publisher
Royal Society of Chemistry (RSC)
Citation
Liu, Albert Tianxiang et al. "Autoperforation of two-dimensional materials to generate colloidal state machines capable of locomotion." Faraday Discussions 227 (2021): 213-232.
Version: Final published version
ISSN
1359-6640
1364-5498

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.