Show simple item record

dc.contributor.authorLew, Andrew James
dc.contributor.authorYu, Chi-Hua
dc.contributor.authorHsu, Yu-Chuan
dc.contributor.authorBuehler, Markus J
dc.date.accessioned2021-09-29T17:41:35Z
dc.date.available2021-09-29T17:41:35Z
dc.date.issued2021-04
dc.date.submitted2020-09
dc.identifier.issn2397-7132
dc.identifier.urihttps://hdl.handle.net/1721.1/132662
dc.description.abstractUnderstanding fracture is critical to the design of resilient nanomaterials. Molecular dynamics offers a way to study fracture at an atomistic level, but is computationally expensive with limitations of scalability. In this work, we build upon machine-learning approaches for predicting nanoscopic fracture mechanisms including crack instabilities and branching as a function of crystal orientation. We focus on a particular technologically relevant material system, graphene, and apply a deep learning method to the study of such nanomaterials and explore the parameter space necessary for calibrating machine-learning predictions to meaningful results. Our results validate the ability of deep learning methods to quantitatively capture graphene fracture behavior, including its fractal dimension as a function of crystal orientation, and provide promise toward the wider application of deep learning to materials design, opening the potential for other 2D materials.en_US
dc.description.sponsorshipNSF (Grant 1122374)en_US
dc.description.sponsorshipOffice of Naval Research (Grants N000141612333 and N000141912375)en_US
dc.description.sponsorshipAFOSR-MURI (Contract FA9550-15-1-0514)en_US
dc.description.sponsorshipArmy Research Office (Contract W911NF1920098)en_US
dc.description.sponsorshipNIH (Grant U01-EB014976)en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttps://doi.org/10.1038/s41699-021-00228-xen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleDeep learning model to predict fracture mechanisms of grapheneen_US
dc.typeArticleen_US
dc.identifier.citationLew, Andrew J. et al. "Deep learning model to predict fracture mechanisms of graphene." npj 2D Materials and Applications 5, 1 (April 2021): 48. © 2021 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Computational Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Materials Science and Engineeringen_US
dc.relation.journalnpj 2D Materials and Applicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2021-05-25T17:50:26Z
mit.journal.volume5en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusCompleteen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record