MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gore Mountain Garnet Amphibolite Records UHT Conditions: Implications for the Rheology of the Lower Continental Crust during Orogenesis

Author(s)
Shinevar, William J; Jagoutz, Oliver; VanTongeren, Jill A
Thumbnail
DownloadAccepted version (4.446Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The Gore Mountain Garnet Amphibolite (GMGA), part of the Mesoproterozoic Grenville Province in the Adirondack Highlands, NY, USA, is an iconic rock type known for hosting the world’s largest garnets (up to 1 m diameter). We present a new detailed petrographic study of these rocks. Field relations, whole-rock, and mineral major and trace element chemistry suggest that these rocks formed via a prograde hydration reaction of a metagabbro during an increase in pressure and temperature. Laser ablation inductively coupled plasma mass spectrometry U–Pb geochronology applied to zircon interpreted to be metamorphic in origin dates this reaction to 1053·9 ± 5·4 Ma (2σ; MSWD = 0·94), during the Ottawan Orogeny (1090–1020 Ma). Our results on peak metamorphic P–T conditions based on thermobarometry, diffusion models, and thermodynamic modelling indicate that these rocks formed at ultrahigh-temperature (>900 °C) conditions (P = 9–10 kbar, T = 950 ± 40 °C), significantly hotter than previously estimated. Diffusion models pinned by nearby cooling ages require the GMGA to initially cool quickly (9·1 °C Ma–1), followed by slower cooling (2·6 °C Ma–1). The two-stage cooling history for the GMGA could reflect initial advection-dominated cooling followed by conduction-dominated cooling once flow ceases. Our results suggest that the region was hot enough to undergo topography-driven lower crustal flow similar to that hypothesized for modern Tibet for 20–0 Ma (25–0 Ma when the effects of melt are included).
Date issued
2021-01
URI
https://hdl.handle.net/1721.1/132666
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Woods Hole Oceanographic Institution
Journal
Journal of Petrology
Publisher
Oxford University Press (OUP)
Citation
Shinevar, William J. et al. "Gore Mountain Garnet Amphibolite Records UHT Conditions: Implications for the Rheology of the Lower Continental Crust during Orogenesis." Journal of Petrology 62, 4 (January 2021): egab007. © 2021 Oxford University Press
Version: Author's final manuscript
ISSN
0022-3530
1460-2415

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.