MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Limited iodate reduction in shipboard seawater incubations from the Eastern Tropical North Pacific oxygen deficient zone

Author(s)
Hardisty, D.S.; Horner, T.J.; Evans, N.; Moriyasu, R.; Babbin, Andrew R.; Wankel, S.D.; Moffett, J.W.; Nielsen, S.G.; ... Show more Show less
Thumbnail
DownloadAccepted version (1.203Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The relative abundance of the inorganic iodine species, iodide and iodate, are applied to characterize both modern and ancient marine oxygen deficient zones (ODZs). However, the rates and mechanisms responsible for in situ iodine redox transformations are poorly characterized, rendering iodine-based redox reconstructions uncertain. Here, we provide constraints on the rates and mechanisms of iodate reduction in the Eastern Tropical North Pacific (ETNP) offshore ODZ using a shipboard tracer–incubation method. Observations of iodate reduction from incubations were limited to the top of the oxycline (σθ∼25.2kgm−3) where native oxygen concentrations were low, but detectable (≈11 μM). Incubations from additional depths below the oxycline—where O2 was <2 μM—yielded no detectable evidence of iodate reduction despite hosting the lowest iodate concentrations. These experiments place an upper limit of iodate reduction rates of generally <15 nM day−1 but as low as <2.3 nM day−1, which are based on variable precision of individually incubated replicates between experiments. Experimental inferences of limited or slow iodate reduction in the ODZ core relative to that observed in the oxycline are generally consistent with iodate persistence of up to 70 nM and low biological productivity in this zone. We also compare dissolved iodine and oxygen concentrations between variable water masses of the ETNP and globally distributed open ocean ODZs. Consistent with sluggish reduction rates, comparison of iodate concentrations with previously published water mass analyses within the ETNP ODZ (σθ=26-27kgm−3; O<27μM) demonstrate iodate as a semi-conservative tracer at least partially reflecting regional water mass mixing. A compilation of iodate and dissolved oxygen concentrations from global ODZs generally supports that at least some iodate variations in both vertical and lateral transects largely reflect variable combinations of relatively slow reduction and mixing of iodate reduction signals generated in adjacent regions—as opposed to solely rapid in situ processes. In this context, the variations in iodine speciation inferred for the ancient and modern ocean represent a combination of in situ processes and regional mixing between water masses that retain variable spatially and temporally integrated redox histories.
Date issued
2021-01
URI
https://hdl.handle.net/1721.1/132667
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Earth and Planetary Science Letters
Publisher
Elsevier BV
Citation
Hardisty, D.S. et al. "Limited iodate reduction in shipboard seawater incubations from the Eastern Tropical North Pacific oxygen deficient zone." Earth and Planetary Science Letters 554 (January 2021): 116676. © 2020 Elsevier B.V.
Version: Author's final manuscript
ISSN
0012-821X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.