Show simple item record

dc.contributor.authorGupta, Samarth
dc.contributor.authorSeshadri, Ravi
dc.contributor.authorAtasoy, Bilge
dc.contributor.authorPrakash, A Arun
dc.contributor.authorPereira, Francisco
dc.contributor.authorTan, Gary
dc.contributor.authorBen-Akiva, Moshe
dc.date.accessioned2021-10-04T13:42:10Z
dc.date.available2021-10-04T13:42:10Z
dc.date.issued2020-02-24
dc.identifier.issn0361-1981
dc.identifier.issn2169-4052
dc.identifier.urihttps://hdl.handle.net/1721.1/132692
dc.description.abstractUrban traffic congestion has led to an increasing emphasis on management measures for more efficient utilization of existing infrastructure. In this context, this paper proposes a novel framework that integrates real-time optimization of control strategies (tolls, ramp metering rates, etc.) with the generation of traffic guidance information using predicted network states for dynamic traffic assignment systems. The efficacy of the framework is demonstrated through a fixed demand dynamic toll optimization problem, which is formulated as a non-linear program to minimize predicted network travel times. A scalable efficient genetic algorithm that exploits parallel computing is applied to solve this problem. Experiments using a closed-loop approach are conducted on a large-scale road network in Singapore to investigate the performance of the proposed methodology. The results indicate significant improvements in network-wide travel time of up to 9% with real-time computational performance.en_US
dc.language.isoen
dc.publisherSAGE Publicationsen_US
dc.relation.isversionof10.1177/0361198120907903en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleReal-Time Predictive Control Strategy Optimizationen_US
dc.typeArticleen_US
dc.identifier.citationGupta S, Seshadri R, Atasoy B, et al. Real-Time Predictive Control Strategy Optimization. Transportation Research Record. 2020;2674(3):1-11en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Computational Science and Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.contributor.departmentSingapore-MIT Alliance in Research and Technology (SMART)
dc.relation.journalTransportation Research Recorden_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-10-01T17:04:44Z
dspace.orderedauthorsGupta, S; Seshadri, R; Atasoy, B; Prakash, AA; Pereira, F; Tan, G; Ben-Akiva, Men_US
dspace.date.submission2021-10-01T17:04:46Z
mit.journal.volume2674en_US
mit.journal.issue3en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record