MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Morphogenesis and proportionate growth: A finite element investigation of surface growth with coupled diffusion

Author(s)
von Streng, Virginia; Abi-Akl, Rami; Giovanardi, Bianca; Cohen, Tal
Thumbnail
DownloadSubmitted version (3.287Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2020 Modeling the spontaneous evolution of morphology in natural systems and its preservation by proportionate growth remains a major scientific challenge. Yet, it is conceivable that if the basic mechanisms of growth and the coupled kinetic laws that orchestrate their function are accounted for, a minimal theoretical model may exhibit similar growth behaviors. The ubiquity of surface growth, a mechanism by which material is added or removed on the boundaries of the body, has motivated the development of theoretical models, which can capture the diffusion-coupled kinetics that govern it. However, due to their complexity, application of these models has been limited to simplified geometries. In this paper, we tackle these complexities by developing a finite element framework to study the diffusion-coupled growth and morphogenesis of finite bodies formed on uniform and flat substrates. We find that in this simplified growth setting, the evolving body exhibits a sequence of distinct growth stages that are reminiscent of natural systems, and appear spontaneously without any externally imposed regulation or coordination. The computational framework developed in this work can serve as the basis for future models that are able to account for growth in arbitrary geometrical settings, and can shed light on the basic physical laws that orchestrate growth and morphogenesis in the natural world.
Date issued
2021
URI
https://hdl.handle.net/1721.1/132782
Journal
Journal of the Mechanics and Physics of Solids
Publisher
Elsevier BV
Citation
Virginia von Streng, Rami Abi-Akl, Bianca Giovanardi, Tal Cohen, Morphogenesis and proportionate growth: A finite element investigation of surface growth with coupled diffusion, Journal of the Mechanics and Physics of Solids, Volume 146, 2021
Version: Original manuscript
ISSN
0022-5096

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.