Show simple item record

dc.contributor.authorTao, James
dc.contributor.authorZhao, Yifei
dc.date.accessioned2021-10-12T18:50:14Z
dc.date.available2021-10-12T18:50:14Z
dc.date.issued2021-01
dc.date.submitted2020-12
dc.identifier.issn1432-1807
dc.identifier.issn0025-5831
dc.identifier.urihttps://hdl.handle.net/1721.1/132935
dc.description.abstractLet X be a smooth, geometrically connected curve over a perfect field k. Given a connected, reductive group G, we prove that central extensions of G by the sheaf K2 on the big Zariski site of X, studied in Brylinski–Deligne [5], are equivalent to factorization line bundles on the Beilinson–Drinfeld affine Grassmannian GrG. Our result affirms a conjecture of Gaitsgory–Lysenko [13] and classifies factorization line bundles on GrG. .en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00208-021-02154-1en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleCentral extensions by K2 and factorization line bundlesen_US
dc.typeArticleen_US
dc.identifier.citationTao, J., Zhao, Y. Central extensions by K2 and factorization line bundles. Math. Ann. 381, 769–805 (2021)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-10-09T03:17:27Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2021-10-09T03:17:27Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusCompleteen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record