MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Is It Possible for Young Students to Learn the AI-STEAM Application with Experiential Learning?

Author(s)
Hsu, Ting-Chia; Abelson, Harold; Lao, Natalie; Chen, Shih-Chu
Thumbnail
Downloadsustainability-13-11114-v2.pdf (2.843Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
This study attempted to evaluate the learning effectiveness of using the MIT App Inventor platform and its Personal Image Classifier (PIC) tool in the interdisciplinary application. The instructional design was focused on applying PIC in the integration of STEAM (i.e., Science, Technology, Engineering, Art, and Mathematics) interdisciplinary learning, so as to provide sustainable and suitable teaching content based on the experiential learning theory for 7th grader students. Accordingly, the sustainable AI-STEAM course with the experiential learning framework has been implemented and verified, so as to confirm that the AI-STEAM course is not too difficult for young students. Many basic concepts involved in the AI-STEAM course, regarding programming logic, electromechanical concepts, interface design, and the application of image recognition, were measured in this study. The results showed that the students not only made significant progress in learning effectiveness, but also in particular made significant improvements in two parts: electromechanical concepts and image recognition knowledge. In the end, this study further provides some advice on the sustainable AI-STEAM course based on the survey of some important factors including active learning, and self-efficacy after confirming that it is not a barrier for the young students to learn the sustainable AI-STEAM course developed in this study.
Date issued
2021-10
URI
https://hdl.handle.net/1721.1/132945
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Sustainability
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Sustainability 13 (19): 11114 (2021)
Version: Final published version
ISSN
2071-1050

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.