MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Perception-aware trajectory generation for aggressive quadrotor flight using differential flatness

Author(s)
Murali, Varun; Spasojevic, Igor; Guerra, Winter J.; Karaman, Sertac
Thumbnail
DownloadACC19.pdf (2.099Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Recent advances in visual-inertial state estimation have allowed quadrotor aircraft to autonomously navigate in unknown environments at operational speeds. In most cases, substantially higher speeds can be achieved by actively designing motion that reduces state estimation error. We are interested in autonomous vehicles running feature-based visual-inertial state estimation algorithms. In particular, we consider a trajectory optimization problem in which the goal is to maximize co-visibility of features, i.e. features are kept visible in the camera view from one keyframe to the next, increasing state estimation accuracy. Our algorithm is developed for autonomous quadrotor aircraft, for which position and yaw trajectories can be tracked separately. We assume that the desired positions of the vehicle are determined a priori, for instance, by a path planner that uses obstacles in the environment to generate a trajectory of positions with free yaw. This paper presents a novel algorithm that determines the yaw trajectory that jointly optimizes aggressiveness and feature co-visibility. The benefit of this algorithm was experimentally verified using a custom built quadrotor which uses visual inertial odometry for state estimation. The generated trajectories lead to better state estimation which contributes to improved trajectory tracking by a state-of-the-art controller under autonomous high-speed flight. Our results show that the root-mean-square error of the trajectory tracking is improved by almost 70%.
Date issued
2019-08
URI
https://hdl.handle.net/1721.1/132953
Department
Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
2019 American Control Conference (ACC)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Murali, Varun et al. "Perception-aware trajectory generation for aggressive quadrotor flight using differential flatness." 2019 American Control Conference, July 2019, Philadelphia, PA, USA, Institute of Electrical and Electronics Engineers, August 2019. © 2019 IEEE
Version: Author's final manuscript
ISBN
9781538679265
ISSN
2378-5861

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.