MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Landscape‐scale plant water content and carbon flux behavior following moisture pulses: from dryland to mesic environments

Author(s)
Feldman, Andrew F; Chulakadabba, Apisada; Short Gianotti, Daniel J; Entekhabi, Dara
Thumbnail
DownloadPublished version (3.411Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Rain pulses followed by interstorm drying periods are the fundamental units of water input into ecosystems on subweekly time scales. It is essential to understand landscape-scale vegetation responses on these unit time scales as they may describe sensitivity of landscape water, carbon, and energy cycles to shifts in rainfall intensity and frequency, even if the average seasonal precipitation remains unchanged. Because pulse investigations are primarily carried out in drylands, little is known about the characteristics and extent of ecosystem plant pulse responses across the broader range of climates and biomes. Using satellite-based plant water content (from vegetation optical depth) and plant carbon uptake observations from eddy covariance towers across the continental United States climate gradient (dry to humid), we characterize large-scale plant carbon and water uptake responses to rain pulses during spring and summer months. We find that while all ecosystems in the study region show discernable plant water content and carbon flux responses to rain pulses, drier ecosystems exhibit more frequent and longer duration responses. Unlike mesic environments, drylands show significantly different responses under varying antecedent soil moisture and pulse magnitude conditions; the largest water and carbon uptakes follow large pulses on initially wet soils. We detect soil moisture thresholds primarily in drylands, which can partly explain dryland vegetation's different responses under dry and wet conditions. We conclude that vegetation responds to individual pulses of water availability across all climates and therefore a range of ecosystems are sensitive to rainfall distributions beyond simple seasonal precipitation totals.
Date issued
2021-01
URI
https://hdl.handle.net/1721.1/132960
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Water Resources Research
Publisher
American Geophysical Union (AGU)
Citation
Feldman, A. F., Chulakadabba, A., Short Gianotti, D. J., & Entekhabi, D. (2021). Landscape-scale plant water content and carbon flux behavior following moisture pulses: From dryland to mesic environments. Water Resources Research, 57. © 2020 The Authors
Version: Final published version
ISSN
1944-7973

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.