MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carbon storage capacity of tropical peatlands in natural and artificial drainage networks

Author(s)
Cobb, Alexander R; Dommain, René; Tan, Fangyi; Hwee En Heng, Naomi; Harvey, Charles F
Thumbnail
DownloadPublished version (3.870Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Tropical peatlands store over 75 gigatons of carbon as organic matter that is protected from decomposition and fire by waterlogging if left undrained. Over millennia, this organic matter builds up between channels or rivers into gently mounded shapes called peat domes. Measurements of peat accumulation and water flow suggest that tropical peat domes approach a steady state in which the peat surface morphology is described by a uniform curvature, setting a limit on the carbon that a peatland can store. We explored the maximum amount of carbon that can accumulate as water-saturated peat in natural and artificial drainage networks of northwest and southern Borneo. We find that the maximum volume of peat accumulation in a channel-bounded parcel is proportional to the square of the parcel area times a scale-independent factor describing the shape of the parcel boundary. Thus, carbon capacity per area scales roughly with mean parcel area in the peatland. Our analysis provides a tool that can be used to predict the long-term impacts of artificial drainage, and to devise optimal strategies for arresting fires and greenhouse gas emissions in tropical peatlands.
Date issued
2020-10
URI
https://hdl.handle.net/1721.1/132969
Department
Singapore-MIT Alliance in Research and Technology (SMART); Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Environmental Research Letters
Publisher
IOP Publishing
Citation
Alexander R Cobb et al, Carbon storage capacity of tropical peatlands in natural and artificial drainage networks, 2020 Environ. Res. Lett. 15 114009. © 2020 The Author(s). Published by IOP Publishing Ltd
Version: Final published version
ISSN
1748-9326

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.