Show simple item record

dc.contributor.authorLópez-Sánchez, Daniel
dc.contributor.authorde Bodt, Cyril
dc.contributor.authorLee, John A.
dc.contributor.authorArrieta, Angélica G.
dc.contributor.authorCorchado, Juan M.
dc.date.accessioned2021-10-18T13:53:52Z
dc.date.available2021-10-18T13:53:52Z
dc.date.issued2021-07
dc.identifier.issn1573-7497
dc.identifier.issn0924-669X
dc.identifier.urihttps://hdl.handle.net/1721.1/133016
dc.description.abstractRandom Projection is one of the most popular and successful dimensionality reduction algorithms for large volumes of data. However, given its stochastic nature, different initializations of the projection matrix can lead to very different levels of performance. This paper presents a guided random search algorithm to mitigate this problem. The proposed method uses a small number of training data samples to iteratively adjust a projection matrix, improving its performance on similarly distributed data. Experimental results show that projection matrices generated with the proposed method result in a better preservation of distances between data samples. Conveniently, this is achieved while preserving the database-friendliness of the projection matrix, as it remains sparse and comprised exclusively of integers after being tuned with our algorithm. Moreover, running the proposed algorithm on a consumer-grade CPU requires only a few seconds.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10489-021-02626-6en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titleTuning Database-Friendly Random Projection Matrices for Improved Distance Preservation on Specific Dataen_US
dc.typeArticleen_US
dc.identifier.citationLópez-Sánchez, D., de Bodt, C., Lee, J.A. et al. Tuning Database-Friendly Random Projection Matrices for Improved Distance Preservation on Specific Data. Appl Intell (2021)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratory
dc.relation.journalApplied Intelligenceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-10-17T03:14:38Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2021-10-17T03:14:38Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record