MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Laboratory studies on the viability of life in H2-dominated exoplanet atmospheres

Author(s)
Seager, Sara; Huang, Jin; Petkowski, Janusz Jurand; Pajusalu, Mihkel
Thumbnail
DownloadAccepted version (1.609Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Theory and observation for the search for life on exoplanets via atmospheric ‘biosignature gases’ is accelerating, motivated by the capabilities of the next generation of space- and ground-based telescopes. The most observationally accessible rocky planet atmospheres are those dominated by molecular hydrogen gas, because the low density of H2 gas leads to an expansive atmosphere. The capability of life to withstand such exotic environments, however, has not been tested in this context. We demonstrate that single-celled microorganisms (Escherichia coli and yeast) that normally do not inhabit H2-dominated environments can survive and grow in a 100% H2 atmosphere. We also describe the astonishing diversity of dozens of different gases produced by E. coli, including many already proposed as potential biosignature gases (for example, nitrous oxide, ammonia, methanethiol, dimethylsulfide, carbonyl sulfide and isoprene). This work demonstrates the utility of laboratory experiments to better identify which kinds of alien environments can host some form of possibly detectable life.
Date issued
2020
URI
https://hdl.handle.net/1721.1/133035
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Chemistry
Journal
Nature Astronomy
Publisher
Springer Science and Business Media LLC
Citation
Seager, S, Huang, J, Petkowski, Janusz Jurand and Pajusalu, Mihkel. 2020. "Laboratory studies on the viability of life in H2-dominated exoplanet atmospheres." Nature Astronomy, 4 (8).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.