Show simple item record

dc.contributor.authorZhao, Lijiang
dc.contributor.authorWang, Shitong
dc.contributor.authorDong, Yanhao
dc.contributor.authorQuan, Wei
dc.contributor.authorHan, Fei
dc.contributor.authorHuang, Yimeng
dc.contributor.authorLi, Yutong
dc.contributor.authorLiu, Xinghua
dc.contributor.authorLi, Mingda
dc.contributor.authorZhang, Zhongtai
dc.contributor.authorZhang, Junying
dc.contributor.authorTang, Zilong
dc.contributor.authorLi, Ju
dc.date.accessioned2021-10-19T16:10:19Z
dc.date.available2021-10-19T16:10:19Z
dc.date.issued2020-10
dc.date.submitted2020-10
dc.identifier.issn2405-8297
dc.identifier.urihttps://hdl.handle.net/1721.1/133050
dc.description.abstractHigh-volumetric-energy-density lithium-ion batteries require anode material with a suitable redox potential, a small surface area, and facile kinetics at both single-particle and electrode level. Here a family of coarse-grained molybdenum substituted titanium niobium oxides Mo[subscript x]Ti[subscript 1−x]Nb[subscript 2]O[subscript 7+y] (single crystals with 1~2 μm size) underwent hydrogen reduction treatment to improve electronic conduction was synthesized, which is able to stably deliver a capacity of 158.5 mAh g[superscript −1] at 6,000 mA g[superscript −1] (65.2 % retention with respect to its capacity at 100 mA g[superscript −1] ) and 175 mAh g[superscript −1] (73 % capacity retention over 500 cycles) at 2,000 mA g[superscript −1], respectively. Via careful in situ electrochemical characterizations, we identified the kinetic bottleneck that limits their high-rate applications to be mainly ohmic loss at the electrode level (which mostly concerns electron transport in the composite electrodes) rather than non-ohmic loss (which mostly concerns Li+ lattice diffusion within individual particles). Such a kinetic problem was efficiently relieved by simple treatments of Mo substitution and gas-phase reduction, which enable full cells with high electrode density, and high volumetric energy/power densities. Our work highlights the importance of diagnosis, so that modifications could be made specifically to improve full-cell performance.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.ENSM.2020.10.016en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Mingda Lien_US
dc.titleCoarse-grained reduced Mo Ti1−Nb2O7+ anodes for high-rate lithium-ion batteriesen_US
dc.typeArticleen_US
dc.identifier.citationZhao, Lijiang et al. "Coarse-grained reduced MoxTi1−xNb2O7+y anodes for high-rate lithium-ion batteries." Energy Storage Materials 34 (January 2021): 574-581. © 2020 Elsevier B.V.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.relation.journalEnergy Storage Materialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-10-19T13:57:18Z
dspace.orderedauthorsZhao, L; Wang, S; Dong, Y; Quan, W; Han, F; Huang, Y; Li, Y; Liu, X; Li, M; Zhang, Z; Zhang, J; Tang, Z; Li, Jen_US
dspace.date.submission2021-10-19T13:57:20Z
mit.journal.volume34en_US
mit.licensePUBLISHER_CC
mit.metadata.statusCompleteen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record