Impact of colonization history on the composition of ecological systems
Author(s)
Zhao, Nannan; Saavedra, Serguei; Liu, Yang-Yu
DownloadPublished version (575.8Kb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Observational studies of ecological systems have shown that different species compositions can arise from distinct species arrival orders during community assembly-also known as colonization history. The presence of multiple interior equilibria in the positive orthant of the state space of the population dynamics will naturally lead to history dependency of the final state. However, it is still unclear whether and under which conditions colonization history will dominate community composition in the absence of multiple interior equilibria. Here, by considering that only one species can invade at a time and there are no recurrent invasions, we show clear evidence that the colonization history can have a big impact on the composition of ecological systems even in the absence of multiple interior equilibria. In particular, we first derive two simple rules to determine whether the composition of a community will depend on its colonization history in the absence of multiple interior equilibria and recurrent invasions. Then we apply them to communities governed by generalized Lotka-Volterra (gLV) dynamics and propose a numerical scheme to measure the probability of colonization history dependence. Finally, we show, via numerical simulations, that for gLV dynamics with a single interior equilibrium, the probability that community composition is dominated by colonization history increases monotonically with community size, network connectivity, and the variation of intrinsic growth rates across species. These results reveal that in the absence of multiple interior equilibria and recurrent invasions, community composition is a probabilistic process mediated by ecological dynamics via the interspecific variation and the size of regional pools.
Date issued
2021-05Department
Massachusetts Institute of Technology. Department of Civil and Environmental EngineeringJournal
Physical Review E
Publisher
American Physical Society (APS)
Citation
Nannan Zhao, Serguei Saavedra, and Yang-Yu Liu, V, Phys. Rev. E 103, 052403
Version: Final published version