Show simple item record

dc.contributor.authorCorrea, Santiago
dc.contributor.authorBoehnke, Natalie
dc.contributor.authorBarberio, Antonio E
dc.contributor.authorDeiss-Yehiely, Elad
dc.contributor.authorShi, Aria
dc.contributor.authorOberlton, Benjamin
dc.contributor.authorSmith, Sean G
dc.contributor.authorZervantonakis, Ioannis
dc.contributor.authorDreaden, Erik C
dc.contributor.authorHammond, Paula T
dc.date.accessioned2022-01-26T15:09:01Z
dc.date.available2021-10-25T16:31:24Z
dc.date.available2022-01-26T15:09:01Z
dc.date.issued2020-01
dc.date.submitted2019-11
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.urihttps://hdl.handle.net/1721.1/133090.2
dc.description.abstract© 2020 American Chemical Society. Nanoparticle surface chemistry is a fundamental engineering parameter that governs tumor-targeting activity. Electrostatic assembly generates controlled polyelectrolyte complexes through the process of adsorption and charge overcompensation utilizing synthetic polyions and natural biomacromolecules; it can yield films with distinctive hydration, charge, and presentation of functional groups. Here, we used electrostatic layer-by-layer (LbL) assembly to screen 10 different surface chemistries for their ability to preferentially target human ovarian cancer in vitro. Our screen identified that poly-l-aspartate, poly-l-glutamate, and hyaluronate-coated LbL nanoparticles have striking specificity for ovarian cancer, while sulfated poly(β-cyclodextrin) nanoparticles target noncancerous stromal cells. We validated top candidates for tumor-homing ability with a murine model of metastatic disease and with patient-derived ovarian cancer spheroids. Nanoparticle surface chemistry also influenced subcellular trafficking, indicating strategies to target the cell membrane, caveolae, and perinuclear vesicles. Our results confirm LbL is a powerful tool to systematically engineer nanoparticles and achieve specific targeting.en_US
dc.language.isoen
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/ACSNANO.9B09213en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePNASen_US
dc.titleTuning Nanoparticle Interactions with Ovarian Cancer through Layer-by-Layer Modification of Surface Chemistryen_US
dc.typeArticleen_US
dc.identifier.citationCorrea, Santiago, Boehnke, Natalie, Barberio, Antonio E, Deiss-Yehiely, Elad, Shi, Aria et al. 2020. "Tuning Nanoparticle Interactions with Ovarian Cancer through Layer-by-Layer Modification of Surface Chemistry." ACS Nano, 14 (2).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MIT
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies
dc.relation.journalACS Nanoen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-06-10T15:40:52Z
dspace.orderedauthorsCorrea, S; Boehnke, N; Barberio, AE; Deiss-Yehiely, E; Shi, A; Oberlton, B; Smith, SG; Zervantonakis, I; Dreaden, EC; Hammond, PTen_US
dspace.date.submission2021-06-10T15:40:54Z
mit.journal.volume14en_US
mit.journal.issue2en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version