MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A deep learning approach for designed diffraction-based acoustic patterning in microchannels

Author(s)
Raymond, Samuel J; Collins, David J; O’Rorke, Richard; Tayebi, Mahnoush; Ai, Ye; Williams, John; ... Show more Show less
Thumbnail
DownloadPublished version (1.999Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2020, The Author(s). Acoustic waves can be used to accurately position cells and particles and are appropriate for this activity owing to their biocompatibility and ability to generate microscale force gradients. Such fields, however, typically take the form of only periodic one or two-dimensional grids, limiting the scope of patterning activities that can be performed. Recent work has demonstrated that the interaction between microfluidic channel walls and travelling surface acoustic waves can generate spatially variable acoustic fields, opening the possibility that the channel geometry can be used to control the pressure field that develops. In this work we utilize this approach to create novel acoustic fields. Designing the channel that results in a desired acoustic field, however, is a non-trivial task. To rapidly generate designed acoustic fields from microchannel elements we utilize a deep learning approach based on a deep neural network (DNN) that is trained on images of pre-solved acoustic fields. We use then this trained DNN to create novel microchannel architectures for designed microparticle patterning.
Date issued
2020-05
URI
https://hdl.handle.net/1721.1/133101
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Center for Computational Science and Engineering; MIT-SUTD Collaboration
Journal
Scientific Reports
Publisher
Springer Science and Business Media LLC
Citation
Raymond, S.J., Collins, D.J., O’Rorke, R. et al. A deep learning approach for designed diffraction-based acoustic patterning in microchannels. Sci Rep 10, 8745 (2020).
Version: Final published version
ISSN
2045-2322

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.