MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of hydraulically disconnecting consumer pumps in an intermittent water supply

Author(s)
Meyer, David DJ; Khari, J; Whittle, Andrew J; Slocum, Alexander H
Thumbnail
DownloadPublished version (5.593Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We estimate 250 million people receive water using private pumps connected directly to intermittently pressurized distribution networks. Yet no previous studies have quantified the presumed effects of these pumps. In this paper, we investigate the effects of installing pressure-sustaining valves at consumer connections. These valves mimic pump disconnection by restricting flow. Installing these valves during the dry season at 94% of connections in an affluent neighborhood in Delhi, India, cut the prevalence of samples with turbidity > 4 NTU by two thirds. But considering the poor reputation of pumps, installed valves had surprisingly small average effects on turbidity (-8%; p<0.01) and free chlorine (+0.05 mg/L; p<0.001; N = 1,031). These effects were much smaller than the high variability in water quality supplied to both control and valve-installed neighborhoods. Site-specific responses to this variability could have confounded our results. At the study site, installed valves increased network pressure during 88% of the typical supply window; valves had a maximum pressure effect of +0.62 m (95% CI [0.54, 0.71]; a 40% increase vs. control). Further research is needed to generalize beyond our study site. Nevertheless, this paper provides unique evidence showing how the deployed valves mitigated pump effects, increased network pressure and improved water safety.
Date issued
2021-06
URI
https://hdl.handle.net/1721.1/133102
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Water Research X
Publisher
Elsevier BV
Citation
David D.J. Meyer, J. Khari, Andrew J. Whittle, Alexander H. Slocum, Effects of hydraulically disconnecting consumer pumps in an intermittent water supply, Water Research X, Volume 12, 2021
Version: Final published version
ISSN
2589-9147

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.