Phase diagram of brittle fracture in the semi-grand-canonical ensemble
Author(s)
Mulla, T; Moeini, S; Ioannidou, K; Pellenq, RJ-M; Ulm, F-J
DownloadPublished version (1.320Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We present a simulation method to assess the quasistatic fracture resistance of materials. Set within a semi-grand-canonical Monte Carlo (SGCMC) simulation environment, an auxiliary field - the bond rupture potential - is introduced to generate a sufficiently large number of possible microstates in the semi-grand-canonical ensemble, and associated energy and bond fluctuations. The SGCMC approach permits identifying the full phase diagram of brittle fracture for harmonic and nonharmonic bond potentials, analogous to the gas-liquid phase diagram, with the equivalent of a liquidus line ending in a critical point. The phase diagram delineates a solid phase, a fractured phase, and a gas phase, and provides clear evidence of a first-order phase transition intrinsic to fracture. Moreover, energy and bond fluctuations generated with the SGCMC approach permit determination of the maximum energy dissipation associated with bond rupture, and hence of the fracture resistance of a widespread range of materials that can be described by bond potentials.
Date issued
2021-01Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; MultiScale Materials Science for Energy and Environment, Joint MIT-CNRS LaboratoryJournal
Physical Review E
Publisher
American Physical Society (APS)
Citation
T. Mulla, S. Moeini, K. Ioannidou, R. J.-M. Pellenq, and F.-J. Ulm, Phase diagram of brittle fracture in the semi-grand-canonical ensemble, Phys. Rev. E 103, 013003
Version: Final published version
ISSN
2470-0053
2470-0045