Show simple item record

dc.contributor.authorTomov, Martin L
dc.contributor.authorO’Neil, Alison
dc.contributor.authorAbbasi, Hamdah S
dc.contributor.authorCimini, Beth A
dc.contributor.authorCarpenter, Anne E
dc.contributor.authorRubin, Lee L
dc.contributor.authorBathe, Mark
dc.date.accessioned2022-01-26T16:02:47Z
dc.date.available2021-10-25T19:01:14Z
dc.date.available2022-01-26T16:02:47Z
dc.date.issued2021-06
dc.date.submitted2021-01
dc.identifier.issn2399-3642
dc.identifier.urihttps://hdl.handle.net/1721.1/133113.2
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Human induced pluripotent stem cell-derived (iPSC) neural cultures offer clinically relevant models of human diseases, including Amyotrophic Lateral Sclerosis, Alzheimer’s, and Autism Spectrum Disorder. In situ characterization of the spatial-temporal evolution of cell state in 3D culture and subsequent 2D dissociated culture models based on protein expression levels and localizations is essential to understanding neural cell differentiation, disease state phenotypes, and sample-to-sample variability. Here, we apply <jats:underline>PR</jats:underline>obe-based <jats:underline>I</jats:underline>maging for <jats:underline>S</jats:underline>equential <jats:underline>M</jats:underline>ultiplexing (PRISM) to facilitate multiplexed imaging with facile, rapid exchange of imaging probes to analyze iPSC-derived cortical and motor neuron cultures that are relevant to psychiatric and neurodegenerative disease models, using over ten protein targets. Our approach permits analysis of cell differentiation, cell composition, and functional marker expression in complex stem-cell derived neural cultures. Furthermore, our approach is amenable to automation, offering in principle the ability to scale-up to dozens of protein targets and samples.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s42003-021-02276-xen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleResolving cell state in iPSC-derived human neural samples with multiplexed fluorescence imagingen_US
dc.typeArticleen_US
dc.identifier.citationTomov, Martin L, O’Neil, Alison, Abbasi, Hamdah S, Cimini, Beth A, Carpenter, Anne E et al. 2021. "Resolving cell state in iPSC-derived human neural samples with multiplexed fluorescence imaging." Communications Biology, 4 (1).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering
dc.relation.journalCommunications Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-08-24T18:49:24Z
dspace.orderedauthorsTomov, ML; O’Neil, A; Abbasi, HS; Cimini, BA; Carpenter, AE; Rubin, LL; Bathe, Men_US
dspace.date.submission2021-08-24T18:49:26Z
mit.journal.volume4en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version