Show simple item record

dc.contributor.authorHansen, Michael
dc.contributor.authorKoyama, Masanori
dc.contributor.authorMcDermott, Matthew B. A.
dc.contributor.authorOrrison, Michael E.
dc.contributor.authorWolff, Sarah
dc.date.accessioned2021-10-26T15:11:13Z
dc.date.available2021-10-26T15:11:13Z
dc.date.issued2021-09
dc.date.submitted2021-08
dc.identifier.issn1531-5851
dc.identifier.issn1069-5869
dc.identifier.urihttps://hdl.handle.net/1721.1/133126
dc.description.abstractWe develop an approach to finding upper bounds for the number of arithmetic operations necessary for doing harmonic analysis on permutation modules of finite groups. The approach takes advantage of the intrinsic orbital structure of permutation modules, and it uses the multiplicities of irreducible submodules within individual orbital spaces to express the resulting computational bounds. We conclude by showing that these bounds are surprisingly small when dealing with certain permutation modules arising from the action of the symmetric group on tabloids.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00041-021-09886-3en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleComputational Bounds for Doing Harmonic Analysis on Permutation Modules of Finite Groupsen_US
dc.typeArticleen_US
dc.identifier.citationHansen, M., Koyama, M., McDermott, M.B.A. et al. Computational Bounds for Doing Harmonic Analysis on Permutation Modules of Finite Groups. J Fourier Anal Appl 27, 80 (2021)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.relation.journalJournal of Fourier Analysis and Applicationsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-10-23T03:22:04Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2021-10-23T03:22:03Z
mit.journal.volume27en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record